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Abstract
We prove a division algorithm for group rings of high
genus surface groups and use it to show that some 2-
complexes with surface fundamental groups are stan-
dard. The division algorithmworks somewhatmore gen-
erally for groups acting on hyperbolic space ℍ𝑛 with
large infimum displacement. We give an application of
this to cohomological dimension of 2-relator groups act-
ing on ℍ𝑛 and to handle decompositions of hyperbolic
𝑛-manifolds.
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1 INTRODUCTION

The goal of this paper is to study 2-complexes𝑋 with a fixed fundamental group Γ up to homotopy
equivalence bymeans of a division algorithmover the group ring ofΓ. These two things are related
through the second homotopy group, which is a ℤΓ-module. Most of the mathematical content
of the paper consists of proving a division algorithm for group rings of high genus surface groups.
We find this interesting in its own right, even outside the context of 2-complexes.

On division

Let 𝐹𝑛 be the free group on 𝑛 generators. In the rational group ring of a free group there is a
division algorithm analogous to polynomial long division that was discovered byMoritz Cohn [5].
A division algorithm is a process that lets one divide one element 𝑥 by another non-zero element
𝑦 with a remainder 𝑟 whose “size” is smaller than that of 𝑦. In the group ring ℚ𝐹𝑛, the measure
of “size” we use is the diameter of the support of the group ring element (defined at the end

© 2022 The Authors. Journal of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

982 wileyonlinelibrary.com/journal/jlms J. London Math. Soc. (2) 2022;106:982–1007.

 14697750, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12590 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:gavramidi@mpim-bonn.mpg.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jlms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12590&domain=pdf&date_stamp=2022-04-14


DIVISION IN GROUP RINGS OF SURFACE GROUPS 983

of this section), which we denote by | ⋅ |. In symbols, a division algorithm asks for 𝑞, 𝑟 ∈ ℚ𝐹𝑛

such that 𝑥 = 𝑞𝑦 + 𝑟 and |𝑟| < |𝑦| or 𝑟 = 0. Unlike in the case of polynomial long division, there
cannot be a division algorithm for non-abelian free groups that works for arbitrary 𝑥 and 𝑦. In fact,
for a generic pair of group ring elements, the diameter of the support of any linear combination
will be at least as large as that of either element, so there is no hope of obtaining a remainder of
smaller diameter. Therefore, in order to have hope there must be linear combinations of 𝑥 and 𝑦

of small diameter. What Cohn discovered is that there is a division algorithm as long as 𝑥 and 𝑦

satisfy a non-trivial linear relation in the group ring. This condition means that there are elements
𝑎, 𝑏 ∈ ℚ𝐹𝑛, not both zero, such that 𝑎𝑥 + 𝑏𝑦 = 0. In fact, a geometric picture of this relation is
what dictates the process for actually running the algorithm (see Section 2).
In this paper, we show that the same division algorithm is truewhenΓ is the fundamental group

of a surface of sufficiently high genus. In applicationswewill also need the division algorithmover
the finite fields 𝔽𝑝. So, we state the theorem for a general coefficient field 𝐾.

Theorem1 (Division algorithm for surface groups).Let𝐾 be a field. LetΓ be the fundamental group
of a closed, orientable, surface of genus⩾ 𝑒1000000. Suppose that 𝑥 and 𝑦 are elements in𝐾Γ satisfying
a non-trivial relation 𝑎𝑥 + 𝑏𝑦 = 0, and 𝑦 ≠ 0. Then there are 𝑞, 𝑟 ∈ 𝐾Γ such that 𝑥 = 𝑞𝑦 + 𝑟 and|𝑟| < |𝑦| or 𝑟 = 0.

Our method is inspired by Hog–Angeloni’s geometric proof of Cohn’s division algorithm [11]
and by Delzant’s proof that groups rings of hyperbolic groups with large infimum displacement
have no zero divisors [8].

Euclid’s algorithm for finding the greatest common divisor

The process of applying the division algorithm repeatedly to a pair of elements, dividing at each
stage the divisor from the previous stage by the remainder is called Euclid’s algorithm. Starting
from the division algorithm in the integers (or in the polynomial ring ℚ[𝑡]) Euclid’s algorithm
produces the greatest common divisor of two integers (or polynomials). The same is true in our
case.

Corollary 2 (Euclid’s algorithm for surface groups). Applying the division algorithm repeatedly,
first dividing 𝑥 by 𝑦 to obtain a remainder 𝑟1, then dividing 𝑦 by 𝑟1 to obtain a remainder 𝑟2, and
so on, eventually produces an element 𝑧 ∶= 𝑟𝑘 that divides the previous 𝑟𝑘−1 with no remainder. The
element 𝑧 obtained in this way is a greatest† common divisor of 𝑥 and 𝑦.

Algebraic application

Rephrasing things a bit, Euclid’s algorithm implies that the (left) ideal (𝑥, 𝑦) generated by two
elements 𝑥, 𝑦 ∈ 𝐾Γ is always free: If 𝑥 and 𝑦 do not satisfy any relation, then they are a free basis
for the ideal, and if they do satisfy a relation, then the ideal is generated by their greatest common

†We say that 𝑧 is a divisor of 𝑥 if 𝑥 = 𝑎𝑧 for some 𝑎 ∈ 𝐾Γ. It is a greatest common divisor of 𝑥 and 𝑦 if 𝑧 is a divisor of 𝑥 and
𝑦 and for any other divisor 𝑧′ of 𝑥 and 𝑦, 𝑧′ divides 𝑧. We say “a” here instead of “the” because greatest common divisors
are only well defined up to multiplication by a unit in 𝐾Γ.
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984 AVRAMIDI

divisor 𝑧. But, by the theorem of Delzant alluded to earlier, 𝑧 is not a zero-divisor, which is the
same as saying that the ideal 𝑧 generates is free. Now, let 𝐾Γ𝑑 be the free 𝐾Γ-module of rank 𝑑.
We will call elements of this free module vectors. A similar argument shows that any two vectors
𝑣, 𝑤 ∈ 𝐾Γ𝑑 generate a free 𝐾Γ-module.

Corollary 3. For any field 𝐾, any submodule𝑀 of 𝐾Γ𝑑 generated by two vectors is free.

For topological applications, we need this sort of result when𝑀 is a submodule of the integral
group ring ℤΓ. A “local-to-global” method of Bass ([1]) let one assemble the ℚ and 𝔽𝑝 statements
together to prove such a result under the additional assumption that the module 𝑀 is projective
(see Corollary 20).We observe that thismethod applies under theweaker assumption that the quo-
tient ℤΓ𝑑∕𝑀 is torsion-free as an abelian group. This is good enough for us since the topologically
meaningful modules associated to a 2-complex satisfy this condition.

Corollary 4. If a submodule𝑀 of ℤΓ𝑑 is generated by two vectors and ℤΓ𝑑∕𝑀 is torsion-free, then
𝑀 is free.

Non-free examples

To put the division algorithm into context, note that the statement of Corollary 4 is false for the
group ℤ2: The ideal (𝑠 − 1, 𝑡 − 1) in ℤ[ℤ2] = ℤ[𝑠, 𝑠−1, 𝑡, 𝑡−1] is not free since it has the obvious
relation (𝑠 − 1)(𝑡 − 1) = (𝑡 − 1)(𝑠 − 1) and cannot be generated by one element. More generally,
for any non-free group Γ generated two elements 𝑎 and 𝑏, the augmentation ideal (𝑎 − 1, 𝑏 − 1)

in ℤΓ is not free,† so the statement of Corollary 4 is also false for such a group. Such groups arise,
by Thurston’s work ([16, 4.7]), as fundamental groups of closed hyperbolic 3-manifolds obtained
by Dehn filling the figure-eight knot complement (see Section 6). So, the division algorithm and
its corollaries do not extend to fundamental groups of arbitrary hyperbolic manifolds.

Groups acting on hyperbolic space with large displacement

Our proof of the division algorithm and its corollaries does work word-for-word for any group
Γ that acts by isometries on hyperbolic space ℍ𝑛 with large infimum displacement, which is
the infimum of the distances by which non-trivial elements of Γ move points in ℍ𝑛, that is,
inf𝑥∈ℍ𝑛,1≠𝛾∈Γ 𝑑(𝑥, 𝛾𝑥).

Theorem 5. Theorem 1 and Corollaries 2–4 hold for any group Γ that acts on hyperbolic space ℍ𝑛

with infimum displacement ⩾ 2000.

Applying Corollary 4 to the augmentation ideal of a group satisfying the condition in Theorem 5
shows that any 2-generator group acting on hyperbolic space with large infimum displacement
has cohomological dimension one and hence, by Stallings’ theorem, is a free group. This recovers
(special cases of) freedom theorems of Delzant ([7]) and Gromov ([10, 5.3A]). Applying it to the
relation module gives a new theorem about 2-relator groups.

† If (𝑎 − 1, 𝑏 − 1) is free, then Γ has cohomological dimension one, hence is free by Stallings’ theorem ([15]).
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 985

Corollary 6. Suppose that Γ is a finitely generated 2-relator group acting by isometries on ℍ𝑛 with
infimum displacement ⩾ 2000. Then Γ has cohomological dimension ⩽ 2.

Another easy consequence of the same sort, but of a more geometric flavor, is as follows.

Corollary 7. Suppose that 𝑀 is a closed hyperbolic 𝑛-manifold of injectivity radius ⩾ 1000. Then
any handle decomposition for𝑀 has at least three 𝑘-handles in each dimension 0 < 𝑘 < 𝑛.

By contrast, the hyperbolic 3-manifolds mentioned above (obtained by Dehn filling the figure-
eight knot complement) only require two 𝑘-handles in each dimension.

Topological application

Let us now turn to the topological applicationmentioned at the beginning of the introduction. An
old theorem of Tietze [6] says that two 2-complexes with the same fundamental group and Euler
characteristic become homotopy equivalent after wedging both of themwith the same sufficiently
large number of 2-spheres. A basic question is to determine whether wedging on these extra 2-
spheres is really necessary. One of the first examples of inequivalent 2-complexes with the same
fundamental group and Euler characteristic involves the trefoil group 𝑇 =< 𝑎, 𝑏 ∣ 𝑎2 = 𝑏3 >. Let
𝑌 be the presentation 2-complex corresponding to this standard presentation. Dunwoody con-
structed another presentation 2-complex 𝑋 for the trefoil group whose second homotopy group
𝜋2𝑋 is not free as a ℤ𝑇-module ([9]). This complex has two generators and two relations, so it
has the same Euler characteristic as 𝑌 ∨ 𝑆2, but is not homotopy equivalent to it (𝜋2(𝑌 ∨ 𝑆2) is
free since 𝑌 is aspherical). Dunwoody also showed that the complexes 𝑋 and 𝑌 ∨ 𝑆2 do become
homotopy equivalent after wedging on another 𝑆2, which on the level of 𝜋2 says that 𝜋2𝑋 ⊕ ℤ𝑇 =

ℤ𝑇 ⊕ ℤ𝑇. So, 𝜋2𝑋 is generated by two elements and is stably free but not free. Corollary 4 implies
that this algebraic phenomenondoes not happen for fundamental groupsΓ of high genus surfaces.
(In fact, the weaker Corollary 20 also implies this conclusion.)
We can also askwhether a similar topological phenomenon to the one discovered byDunwoody

can happen for surface groups Γ = 𝜋1Σ in place of the trefoil group 𝑇. If 𝑋 is a 2-complex with
surface fundamental group and minimal Euler characteristic 𝜒(𝑋) = 𝜒(Σ), then it is easy to see
that 𝑋 is homotopy equivalent to Σ. The first interesting case when the Euler characteristic is
non-minimal is 𝜒(𝑋) = 𝜒(Σ) + 1. The main point is to show that 𝜋2𝑋 is free. One way is to use
a theorem of Louder ([13]) which implies (see Section 7) that 𝑋 becomes standard after wedging
on #(2-cells of 𝑋) − (𝜒(𝑋) − 𝜒(Σ)) different 2-spheres. So, if 𝑋 has two 2-cells, then 𝑋 ∨ 𝑆2 is
homotopy equivalent to Σ ∨ 𝑆2 ∨ 𝑆2. On 𝜋2, this implies that 𝜋2𝑋 is stably free and generated by
two elements. If the surface has high enough genus, then Corollary 4 (or 20) implies that 𝜋2𝑋 is
free, and hence 𝑋 is homotopy equivalent to Σ ∨ 𝑆2.

Theorem 8. Let Σ be a closed, orientable surface of genus ⩾ 𝑒1000000. Suppose that𝑋 is a 2-complex
with two 2-cells and fundamental group 𝜋1𝑋 = 𝜋1Σ. Then 𝑋 is homotopy equivalent to Σ or Σ ∨ 𝑆2.

In fact, a slightly different way to prove the theorem is to use the full strength of Corollary 4 to
bypass Louder’s result by first showing that the relationmodule of𝑋 (which has no a priori reason
to be stably free or projective, but is generated by two relations and does satisfy the hypothesis of
Corollary 4) is free and then using this fact to show that 𝜋2(𝑋) is generated by two elements and,
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986 AVRAMIDI

by another application of Corollary 4, is free as well. This approach has the advantage of applying
more broadly to the groups in Corollary 6 (see Section 6).

On 2-complexes with more 2-cells

Let us finish this introduction with several remarks about generalizations to 2-complexes with
more than two 2-cells.
For the torus groupℤ2 not every submodule of a freeℤ[ℤ2]-module is free, but all the stably-free

ones are (this is Serre’s conjecture proved by Quillen and Suslin, see [12]), and this is all one needs
to show that any 2-complex with ℤ2 fundamental group is standard. For the free groups 𝐹𝑚, there
is a generalization of Euclid’s algorithm (also due to Cohn) which shows that any ideal in ℚ𝐹𝑚

(on any finite number of generators) is free. It also works with coefficients in 𝔽𝑝 instead of ℚ, so
Bass’s theorem implies any stably freeℤ𝐹𝑛-module is free. This implies that all finite 2-complexes
with free fundamental group are standard. (See [11].)
On the other hand, the fundamental group of an orientable genus g surface does has a non-free

ideal on 2g generators, namely, its augmentation ideal. It is tempting to conjecture that any ideal
on fewer than 2g generators is free.

Plan of the paper

We explain the division algorithm for free groups in Section 2. In Section 3 we recall and derive
properties of hyperbolic space that will be used in the proof of the division algorithm for surface
groups (and more generally, groups acting on hyperbolic space with large displacement), which
is given in Section 4. We then give a proof of Euclid’s algorithm together with Corollaries 3 and 4
in Section 5. The geometric and group-theoretic applications (Corollaries 6 and 7) and one way to
get Theorem 8 are proved in Section 6 and the other way is given in Section 7.

Notation and terminology

Before we start, let us fix some notation that will be used throughout the paper and describe how
group ring elements can, to a large extent, be thought of geometrically.
Throughout the paper Γwill denote a group acting by covering translations on a space𝑌, which

is either a tree or a hyperbolic space ℍ𝑛. Pick an orbit of Γ in 𝑌 and identify group elements with
points of that orbit in 𝑌. Let 𝐾 be a field. A group ring element 𝑥 ∈ 𝐾Γ is a finite formal linear
combination 𝑥 =

∑
𝑥𝛾 ⋅ 𝛾.

Support

The support of 𝑥 consists of all the group elements 𝛾 with non-zero coefficients 𝑥𝛾 appearing in
this sum, thought of as points in𝑌. Wewill denote the support of an element by the corresponding
capital letter. So, the support of 𝑥 will be denoted as 𝑋. We will sometimes refer to points in the
support of 𝑥 as “points of 𝑥.”
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 987

Diameter

The diameter of 𝑋 is the maximal distance between a pair of points in 𝑋. It will be denoted by |𝑥|
(or |𝑋|), and we will also call it the diameter of 𝑥.

Barycenter

The barycenter of 𝑋 is the center of the smallest closed ball containing 𝑋. It will be denoted as 𝑥

(or 𝑋), and we will simply call it the barycenter of 𝑥 (or 𝑋).

Boundary points

Let 𝐵𝑥(𝑅) be the smallest closed ball containing 𝑋. We will call points of 𝑋 that are a maximal
distance 𝑅 from the barycenter the boundary points of 𝑥 (or 𝑋).

2 THE DIVISION ALGORITHM FOR FREE GROUPS

In this section, we describe the division algorithm for free groups and sketch its proof.

The algorithm

Suppose that we have a pair of group ring elements 𝑥 and 𝑦 that are related by a non-trivial linear
relation 𝑎𝑥 + 𝑏𝑦 = 0. The main step in the division algorithm is to show that if |𝑥| ⩾ |𝑦|, then we
can subtract translates of 𝑦 from 𝑥 to obtain an element 𝑥1 = 𝑥 − 𝑐1𝑦 whose diameter is strictly
smaller than that of 𝑥. Iterating this step will give division (we will say a few more words about
this iteration at the end of this subsection.)
The choice of 𝑐1 is dictated by the relation 𝑎𝑥 + 𝑏𝑦 = 0 as follows. Let 𝑜 be the barycenter of

the support of 𝑎𝑥 and 𝑅 the radius of the smallest ball 𝐵𝑜(𝑅) containing this support. There is an
𝑥-translate 𝛾𝑥 with 𝑎𝛾 ≠ 0 whose support 𝛾𝑋 contains a boundary point of 𝑎𝑥. We can assume
that 𝛾 = 1, so that 𝑋 contains a boundary point. (If 𝛾 ≠ 1, multiply the relation on the left with
𝛾−1 and start again.) Let us call the points of 𝑥 that are boundary points of 𝑎𝑥 the extremal points
of 𝑥.

Claim 1. Any boundary point of 𝑎𝑥 = −𝑏𝑦 appears in a unique 𝑥-translate (that is, 𝛾𝑥 with 𝑎𝛾 ≠

0) and also in a unique 𝑦-translate (𝜌𝑦 with 𝑏𝜌 ≠ 0.)
Therefore, the extremal points of 𝑥 can all be canceled by 𝑦-translates (weighted with appro-

priate coefficients)† to obtain an element

𝑥1 = 𝑥 −
∑

𝑐𝛾𝛾𝑦,

whose support does not contain any of the extremal points from the support of 𝑥.

† The coefficients are 𝑐𝛾 = −𝑏𝛾∕𝑎1 if 𝛾𝑦 contains an extremal point of 𝑥, and 𝑐𝛾 = 0 otherwise.
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988 AVRAMIDI

Claim 2. 𝑥1 has strictly smaller diameter than 𝑥.

If |𝑥1| < |𝑦|, then we take 𝑥1 to be the remainder. If not, then we note that 𝑥1 and 𝑦 are related
by the non-trivial relation 𝑎𝑥1 + (𝑏 + 𝑎𝑐1)𝑦 = 0 and repeat the above argument. Each iteration
decreases the diameter by at least one, so after finitely many steps we arrive at an element 𝑥𝑛 =

𝑥𝑛−1 − 𝑐𝑛𝑦 = 𝑥 − (𝑐1 + ⋯ + 𝑐𝑛)𝑦 whose diameter is smaller than 𝑦. This is our remainder.

Why it works

The key is that we are on a tree. We repeatedly use the following observation.

∙ If 𝐵𝑜(𝑅) is a closed ball containing a finite set 𝑋 and 𝑝 ∈ 𝑋 is a point on the boundary 𝑆𝑜(𝑅) of
this ball, then the barycenter𝑋 of𝑋 lies on the geodesic from 𝑜 to 𝑝 and is precisely |𝑋|∕2 away
from 𝑝.

Proof. First, pick a diameter realizing segment 𝑞𝑞′ with endpoints in 𝑋 and let𝑚 be its midpoint.
For any other point 𝑟 ∈ 𝑋, either 𝑟𝑚𝑞 or 𝑟𝑚𝑞′ is a geodesic, say the first one. Then |𝑋| ⩾ 𝑑(𝑟, 𝑞) =

𝑑(𝑟,𝑚) + 𝑑(𝑚, 𝑞) = 𝑑(𝑟,𝑚) + |𝑋|∕2 shows that 𝑑(𝑟,𝑚) ⩽ |𝑋|∕2, that is, the closed ball𝐵𝑚(|𝑋|∕2)
contains 𝑋. Now, let 𝐵𝑋(𝑅0) be the smallest closed ball containing 𝑋. Since 𝑋 ⊂ 𝐵𝑚(|𝑋|∕2), we
must have 𝑅0 ⩽ |𝑋|∕2. Either 𝑋𝑚𝑞 or 𝑋𝑚𝑞′ is a geodesic, say the first one. So |𝑋|∕2 ⩾ 𝑅0 ⩾

𝑑(𝑋, 𝑞) = 𝑑(𝑋,𝑚) + 𝑑(𝑚, 𝑞) = 𝑑(𝑋,𝑚) + |𝑋|∕2, implying that 𝑚 = 𝑋 and 𝑅0 = |𝑋|∕2. In sum-
mary, the smallest closed ball containing𝑋 is 𝐵𝑋(|𝑋|∕2) and any diameter realizing segment of𝑋
has 𝑋 as its midpoint.
Now we turn our attention to 𝐵𝑜(𝑅). At least one of 𝑜𝑋𝑞 or 𝑜𝑋𝑞′ is a geodesic, say the first one.

Its length is 𝑑(𝑜, 𝑞) = 𝑑(𝑜, 𝑋) + |𝑋|∕2. Since 𝑋 is in 𝐵𝑜(𝑅), we have 𝑅 ⩾ 𝑑(𝑜, 𝑞) and so

𝑅 − |𝑋|∕2 ⩾ 𝑑(𝑜, 𝑋).
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 989

On the other hand, we have 𝑑(𝑋, 𝑝) ⩽ |𝑋|∕2 since 𝑝 ∈ 𝑋 ⊂ 𝐵𝑋(|𝑋|∕2) and 𝑑(𝑜, 𝑝) = 𝑅 since 𝑝 is
on the boundary of 𝐵𝑜(𝑅), so

𝑑(𝑜, 𝑋) ⩾ 𝑑(𝑜, 𝑝) − 𝑑(𝑝, 𝑋) ⩾ 𝑅 − |𝑋|∕2.
We conclude that all the centered inequalities are equalities, which can only happen if 𝑋 lies on
the geodesic from 𝑜 to 𝑝 and is precisely |𝑋|∕2 away from 𝑝. □

Recall that the support of 𝑥 is denoted as 𝑋. To prove Claim 1 we look at the set

𝑆 =
⋃
𝑎𝛾≠0

𝛾𝑋.

It contains the support of 𝑎𝑥 but can be bigger if 𝑎𝑥 has cancellation. Nonetheless, we will show
that the smallest ball containing the support of 𝑎𝑥 is also the smallest ball containing 𝑆. To that end,
let 𝐵𝑜′(𝑅′) be the smallest ball containing 𝑆, and let 𝑆𝑜′(𝑅′) = 𝜕𝐵𝑜′(𝑅′) be the boundary sphere of
this ball. We will show that any point in 𝑆 ∩ 𝑆𝑜′(𝑅′) is in the support of 𝑎𝑥. For this, it is enough
to show that any 𝑝 ∈ 𝑆 ∩ 𝑆𝑜′(𝑅′) lies in precisely one 𝑋-translate.

Proof. If 𝑎𝛾 ≠ 0 and 𝛾𝑋 contains a point 𝑝 ∈ 𝑆 ∩ 𝑆𝑜′(𝑅′), then, by the above bullet, the barycenter
𝛾𝑥 lies on the geodesic from 𝑜′ to 𝑝 and is precisely |𝑋|∕2 away from 𝑝. If there is another 𝑎𝜌 ≠

0 with 𝜌𝑋 containing 𝑝, then 𝛾𝑥 = 𝜌𝑥 and hence 𝛾 = 𝜌. So, the translates 𝜌𝑋 and 𝛾𝑋 are the
same. □

It follows from this that the points 𝑆 ∩ 𝑆𝑜′(𝑅′) all appear in the support of 𝑎𝑥. Therefore 𝑜 =

𝑜′, 𝑅 = 𝑅′, what we have called above the “boundary points of 𝑎𝑥” are precisely the set 𝑆 ∩ 𝑆𝑜(𝑅),
and every boundary point of 𝑎𝑥 appears in exactly one 𝑥-translate. All the same arguments apply
to the expression 𝑏𝑦. This proves the first claim.

Remark. The figure at the beginning of this section illustrates the situation: the smallest ball
containing 𝑎𝑥 entirely contains the supports of all the 𝑥-translates {𝛾𝑥}𝑎𝛾≠0.

To prove the second claim, one uses similar arguments to show that all the points of 𝑥1 (i) are
⩽ |𝑥|∕2 away from the barycenter 𝑥, and (ii) are not extremal.

Proof of (i) and (ii). If 𝑝 is a point in 𝑥1, then either 𝑝 is in 𝑥 (so (i) 𝑑(𝑥, 𝑝) ⩽
|𝑥|
2
and (ii) 𝑝 is not

extremal by construction of 𝑥1) or 𝑝 is in some 𝑦-translate 𝛾𝑦 in 𝐵𝑜(𝑅) whose support contains
an extremal point of 𝑥. In the later case, 𝑥 is obtained by going along the geodesic from 𝛾𝑦 to
𝑜 for a distance |𝑥|−|𝑦|

2
. Therefore (i) 𝑑(𝑥, 𝑝) ⩽ 𝑑(𝑥, 𝛾𝑦) + 𝑑(𝑦, 𝑝) ⩽

|𝑥|−|𝑦|
2

+
|𝑦|
2

⩽
|𝑥|
2
and (ii) if

𝑝 is extremal then there must be a non-trivial 𝑥-translate 𝜌𝑥 in 𝐵𝑜(𝑅) whose support contains
𝑝. But then 𝜌𝑥 is also obtained by going along the geodesic from 𝛾𝑦 to 𝑜 for a distance |𝑥|−|𝑦|

2
,

so 𝑥 = 𝜌𝑥 and hence 𝑥 = 𝜌𝑥, contradicting the fact that 𝜌𝑥 is a non-trivial translate of 𝑥. So, 𝑝
cannot be extremal.

Now, note that (i) implies |𝑥1| ⩽ |𝑥|. In the case of equality, there is a diameter realizing segment
in 𝑥1 of length |𝑥1| = |𝑥| whose midpoint is 𝑥. But then, at least one of its endpoints is extremal,
which contradicts (ii). So, we must have |𝑥1| < |𝑥|. This proves the second claim.
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990 AVRAMIDI

Where do relations come from?

We can work backward, starting from an element 𝑧 to produce pairs of elements satisfying
successively more complicated relations: (𝑧, 0) → (𝑧, 𝑎𝑧) → (𝑧 + 𝑏𝑎𝑧, 𝑎𝑧) → (𝑧 + 𝑏𝑎𝑧, 𝑎𝑧 + 𝑐𝑧 +

𝑐𝑏𝑎𝑧) → … . What the division algorithm implies is that any pair satisfying a non-trivial linear
relation is obtained by this process.

3 TREE-LIKE PROPERTIES OF HYPERBOLIC SPACE

Our proof of the division algorithm for surface groups is based on the tree-like properties of hyper-
bolic space ℍ𝑛. In this section we recall these properties in a convenient form and derive some
specific consequences that will be used in the proof.

3.1 𝜹-hyperbolicity

Everything can be easily obtained from the following basic property.

∙ There is a universal constant 𝛿 so that if 𝑝𝑞 is a segment with midpoint𝑚 and 𝑜 is any point in
hyperbolic space, then one of the paths 𝑜𝑚𝑝 or 𝑜𝑚𝑞 cannot be shortened by more than 𝛿. In
symbols

max(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩾ 𝑑(𝑜,𝑚) +
1

2
𝑑(𝑝, 𝑞) − 𝛿.

Remark. In a tree we can take 𝛿 = 0 and in hyperbolic space we can take 𝛿 = 5.

It is useful to note that one of the angles ∠𝑚(𝑜, 𝑝) or ∠𝑚(𝑜, 𝑞) is obtuse (⩾ 𝜋∕2), and the maxi-
mum is achieved for the endpoint corresponding to this obtuse angle. It follows that

∙ any geodesic segment connecting a sphere 𝑆𝑜(𝑅) to a larger concentric sphere 𝑆𝑜(𝑅
′) and not

intersecting the interior of 𝐵𝑜(𝑅) has length between |𝑅′ − 𝑅| and |𝑅′ − 𝑅| + 𝛿.

Proof. Let𝑚 be a point on 𝑆𝑜(𝑅) and 𝑞 a point on 𝑆𝑜(𝑅
′). The angle∠𝑚(𝑜, 𝑞) is obtuse, so 𝑑(𝑜, 𝑞) ⩾

𝑑(𝑜,𝑚) + 𝑑(𝑚, 𝑞) − 𝛿. Plugging in 𝑑(𝑜, 𝑞) = 𝑅′ and 𝑑(𝑜,𝑚) = 𝑅 gives 𝑑(𝑚, 𝑞) ⩽ 𝑅′ − 𝑅 + 𝛿. The
other inequality 𝑅′ − 𝑅 ⩽ 𝑑(𝑚, 𝑞) is clear. □

3.2 Midpoints and barycenters

A consequence of 𝛿-hyperbolicity is that if 𝑝𝑞 is a length 𝐿 segment in an 𝑅-ball, then its midpoint
𝑚 is within 𝑅 − 𝐿∕2 + 𝛿 of the center of the ball.

Proof. Let 𝑜 be the center of the 𝑅-ball. Then 𝑅 ⩾ max(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩾ 𝑑(𝑜,𝑚) + 𝐿∕2 − 𝛿.
Another consequence is that any set 𝑋 of diameter 𝐷 is contained in a (𝐷∕2 + 𝛿)-ball. □

Proof. Let 𝑝, 𝑞 be a pair of points realizing the diameter 𝐷 and let 𝑚 be their midpoint. If 𝑜 is
any point in 𝑋, then 𝐷 ⩾ max(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩾ 𝑑(𝑜,𝑚) + 𝐷∕2 − 𝛿 implies 𝑑(𝑜,𝑚) ⩽ 𝐷∕2 + 𝛿.
In other words, 𝑋 is contained in the 𝐷∕2 + 𝛿 ball centered at𝑚. □
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 991

These two properties together imply that

∙ the barycenter of a set is 2𝛿 — close to the midpoint of any segment realizing the diameter.

So we can replace one with the other at the expense of a small error.
Next, suppose that 𝑋 is a set of diameter 𝐷, 𝑥 is its barycenter, and 𝑜 is a point. Then for any

diameter realizing segment 𝑝𝑞 of 𝑋 with midpoint𝑚 we have

max(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩾ 𝑑(𝑜,𝑚) +
𝐷

2
− 𝛿 (1)

⩾ 𝑑(𝑜, 𝑥) +
𝐷

2
− 3𝛿. (2)

For any point 𝑝′ in 𝑋 we have 𝑑(𝑜, 𝑝′) ⩽ 𝑑(𝑜, 𝑥) + 𝑑(𝑥, 𝑝′) ⩽ 𝑑(𝑜, 𝑥) + 𝐷∕2 + 𝛿 and therefore

𝑑(𝑜, 𝑥) ⩾ 𝑑(𝑜, 𝑝′) −
𝐷

2
− 𝛿. (3)

Putting these two inequalities together tells us how far the barycenter 𝑥 is from a point 𝑜 in
terms of the diameter of 𝑋 and the radius of the smallest ball at 𝑜 containing 𝑋.

Lemma 9. If 𝐵𝑜(𝑅) is the smallest ball centered at 𝑜 containing 𝑋, then

𝑅 −
𝐷

2
− 𝛿 ⩽ 𝑑(𝑜, 𝑥) ⩽ 𝑅 −

𝐷

2
+ 3𝛿.

Proof. Plug 𝑑(𝑜, 𝑝′) = 𝑅 into (3) andmax(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩽ 𝑅 into (2). □

Shrinking the diameter of 𝑿

Another application of these inequalities specifies particular points of 𝑋 to throw out in order to
shrink its diameter.

Lemma 10 (Extremal cancellation). If 𝐵𝑜(𝑅) is the smallest ball centered at 𝑜 containing 𝑋, then
the diameter of 𝑋 ∩ 𝐵𝑜(𝑅 − 5𝛿) is strictly less than the diameter of 𝑋.

Proof. If the diameter of 𝑋 ∩ 𝐵𝑜(𝑅 − 5𝛿) is not smaller, one of its diameter realizing segments
𝑝𝑞 also realizes the diameter of 𝑋. Therefore, plugging (3) into (2) and using 𝑅 = 𝑑(𝑜, 𝑝′) gives
max(𝑑(𝑜, 𝑝), 𝑑(𝑜, 𝑞)) ⩾ 𝑅 − 4𝛿, so at least one of the points 𝑝 or 𝑞 is outside the 𝑅 − 5𝛿 ball cen-
tered at 𝑜, which is a contradiction. □

3.3 Fellow traveling

The next treelike feature of hyperbolic space we need is fellow traveling. It says that for a pair of
points 𝑝 and 𝑞 on the boundary of a ball centered at 𝑜, the segments 𝑝𝑞 and 𝑝𝑜 fellow travel until
we reach the midpoint of 𝑝𝑞, up to an error 4𝛿. To express it precisely, it is useful to parametrize
geodesics. For a geodesic segment 𝑝𝑞 we denote by 𝑝𝑞(𝑡) the point obtained by traveling from 𝑝

to 𝑞 for a time 𝑡 along the geodesic.
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992 AVRAMIDI

Lemma 11 (Fellow traveling property). For a pair of points 𝑝, 𝑞 ∈ 𝑆𝑜(𝑅) and 𝑡 ⩽
𝑑(𝑝,𝑞)

2
we have

𝑑(𝑝𝑞(𝑡), 𝑝𝑜(𝑡)) ⩽ 4𝛿.

Proof. Let 𝑚 be the midpoint of 𝑝𝑞, 𝐿 = 𝑑(𝑜,𝑚) and 𝐷 = 𝑑(𝑚, 𝑝). Let 𝑝′ = 𝑝𝑜(𝐷) be the point
obtained by going for a time 𝐷 from 𝑝 to 𝑜 and 𝑝′′ = 𝑜𝑝(𝐿) the point obtained by traveling for a
time 𝐿 from 𝑜 to 𝑝. Finally, let 𝑚′ be the midpoint of the geodesic segment 𝑚𝑝′. Now, since the
angle ∠𝑚(𝑜, 𝑝) is right, it follows that

𝑅 ⩾ 𝐿 + 𝐷 − 𝛿.

It is also clear from the picture that

𝑑(𝑝,𝑚′) ⩾ 𝑑(𝑝′′, 𝑝) = 𝑅 − 𝐿,

and plugging in the previous inequality gives

𝑑(𝑝,𝑚′) ⩾ 𝐷 − 𝛿.

Since the angle ∠𝑚′(𝑝, 𝑝′) is right, if follows that

𝐷 ⩾ 𝑑(𝑝,𝑚′) + 𝑑(𝑚′, 𝑝′) − 𝛿.

Therefore

𝑑(𝑚′, 𝑝′) ⩽ 𝐷 + 𝛿 − 𝑑(𝑝,𝑚′) ⩽ 2𝛿.

Since 𝑚′ is the midpoint of 𝑚𝑝′, it follows that 𝑑(𝑚, 𝑝′) ⩽ 4𝛿. This proves the lemma for 𝑡 =

𝑑(𝑝, 𝑞)∕2. The lemma for smaller values of 𝑡 follows from convexity. □
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 993

Large infimum displacement implies no zero divisors in the group ring

Next, we give a key application of fellow traveling. It is a variation of the main step in Delzant’s
proof [8] that group rings of groups acting with large displacement on 𝛿-hyperbolic spaces have
no zero divisors.

Lemma 12. Let 𝜇 be a non-negative constant. Suppose that 𝛾 is an isometry of ℍ𝑛. If 𝑋 and 𝛾𝑋

are contained in a ball 𝐵𝑜(𝑅) and their intersection contains a point 𝑝 in the 𝜇-neighborhood of
the boundary of the ball, then the midpoint 𝑚 of the segment from 𝑝 to 𝛾𝑝 is moved ⩽ 𝜇 + 9𝛿

by 𝛾−1.

Proof. Let 𝐿 be the length of the segment from 𝑝 to 𝛾𝑝. Let 𝑞 be the point obtained by going from
𝛾𝑝 to 𝑝 for a distance 𝜇 + 𝛿. Then 𝑞 ∈ 𝐵𝑜(𝑅 − 𝜇). Let 𝑚′ be the midpoint of the segment from 𝑝

to 𝑞. Then 𝑝𝑜 fellow travels with 𝑝𝑞 for a time 𝑡 =
𝐿−(𝜇+𝛿)

2
until it reaches𝑚′ so, if we denote by

𝑝′ = 𝑝𝑜(𝑡) the point reached by traveling from 𝑝 to 𝑜 for a time 𝑡, then

𝑑(𝑚, 𝑝′) ⩽ 𝑑(𝑚,𝑚′) + 𝑑(𝑚′, 𝑝′) ⩽
𝜇 + 𝛿

2
+ 4𝛿.

The same argument applied to the segment from 𝑝 to 𝛾−1𝑝 shows that its midpoint 𝛾−1𝑚 satisfies
𝑑(𝛾−1𝑚, 𝑝′) ⩽

𝜇+𝛿

2
+ 4𝛿. Therefore 𝑑(𝑚, 𝛾−1𝑚) ⩽ 𝜇 + 9𝛿. □

In other words, if the infimum displacement of Γ acting on ℍ𝑛 is > 𝜇 + 9𝛿, then Γ-translates of
𝑋 that lie in a ball do not intersect in the 𝜇-neighborhood of the boundary of that ball.
Now we apply this to products in the group ring. The following corollary will be used repeat-

edly in the next section. It implies that any cancellation in a product 𝑎𝑥 happens away from the
boundary of 𝑎𝑥, as long as the infimum displacement is sufficiently large.

Corollary 13. Suppose that Γ has infimum displacement > 𝜇 + 9𝛿. Let 𝑎 and 𝑥 be non-zero group
ring elements. Then, the smallest ball containing the support of 𝑎𝑥 also contains all the 𝑋-translates
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994 AVRAMIDI

{𝛾𝑋}𝑎𝛾≠0. Moreover, every point in the 𝜇-neighborhood of the boundary of this ball is contained in at
most one such 𝑋-translate.

Proof. The support of the product 𝑎𝑥 is contained in the set

𝑆 =
⋃
𝑎𝛾≠0

𝛾𝑋.

Let 𝐵𝑜(𝑅) be the smallest ball containing 𝑆. Lemma 12 implies that on the 𝜇-neighborhood of the
boundary of this ball, the 𝑋 translates {𝛾𝑋}𝑎𝛾≠0 do not intersect. Therefore, 𝐵𝑜(𝑅) is the smallest
ball containing the support of 𝑎𝑥. The rest is clear. □

In particular, this says that once the infimum displacement is > 9𝛿, the support of 𝑎𝑥 is non-
empty, so 𝑎𝑥 ≠ 0.

Corollary 14 (Delzant). Let 𝐾 be a field. If Γ has infimum displacement > 9𝛿, then 𝐾Γ has no
zero divisors.

3.4 Approximating barycenters

The following lemma is useful.

Lemma 15. Suppose that𝑋 is a set with diameter𝐷 and barycenter 𝑥 contained in a ball 𝐵𝑜(𝑅) and
𝑞 ∈ 𝑋 is a point in the 𝜇-neighborhood of the boundary of the ball. Let 𝑞𝑜(𝐷∕2) be the point obtained
by traveling for time 𝐷∕2 along the geodesic from 𝑞 to 𝑜. Then

𝑑(𝑞𝑜(𝐷∕2), 𝑥) ⩽ 9𝛿 +
3

2
𝜇.

Proof.We can assume that 𝑑(𝑞, 𝑜) = 𝑅 − 𝜇. First, note that 𝑑(𝑥, 𝑜) ⩽ 𝑅 − 𝐷

2
+ 3𝛿 implies that the

distance from 𝑥 to 𝑆𝑜(𝑅 − 𝜇) is at least 𝑠 = 𝐷

2
− 3𝛿 − 𝜇. Therefore, the segment 𝑞𝑥 can be extended

by 𝑠 before it reaches 𝑆𝑜(𝑅 − 𝜇), and hence the segment 𝑞𝑥 fellow travels with 𝑞𝑜 for a time 𝑡 =
𝑑(𝑞,𝑥)+𝑠

2
. Also note that the distance from 𝑥 to 𝑞 is controlled by

𝑠 ⩽ 𝑑(𝑥, 𝑞) ⩽
𝐷

2
+ 𝛿.
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 995

Therefore

|𝑑(𝑞, 𝑥) − 𝑡| = 𝑑(𝑞, 𝑥) − 𝑠

2
⩽

4𝛿 + 𝜇

2
,

while

𝑠 ⩽ 𝑡 ⩽
𝐷 − 2𝛿 − 𝜇

2

implies that

|𝑡 − 𝐷∕2| ⩽ 3𝛿 + 𝜇.

Thus, the distance from 𝑥 to 𝑞𝑜(𝐷∕2) is bounded by

𝑑(𝑥, 𝑞𝑜(𝐷∕2)) ⩽ |𝑑(𝑥, 𝑞) − 𝑡| + 4𝛿 + |𝑡 − 𝐷∕2|
⩽ 9𝛿 +

3

2
𝜇. □

An immediate consequence is the following.

Corollary 16. If 𝑋 and 𝑌 are both sets in 𝐵𝑜(𝑅) containing a point 𝑞 in the 𝜇-neighborhood of the
boundary, then the barycenters of 𝑋 and 𝑌 are ||𝑋|−|𝑌||

2
-apart, up to an error 18𝛿 + 3𝜇.

Amore significant consequence for us is the following.

Corollary 17. Suppose that𝑋, 𝛾𝑋, and 𝑌 are contained in a ball 𝐵𝑜(𝑅), the intersection of 𝑌 and𝑋

contains 𝑞, and the intersection of 𝑌 and 𝛾𝑋 contains 𝑞′, where 𝑞 and 𝑞′ are in the 𝜇-neighborhood
of the boundary of the ball. If |𝑋| ⩾ |𝑌|, then

𝑑(𝑥, 𝛾𝑥) ⩽ 36𝛿 + 6𝜇.
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996 AVRAMIDI

Proof. Look at the function 𝑓(𝑡) = 𝑑(𝑞𝑜(𝑡), 𝑞′𝑜(𝑡)). It is ⩽ 18𝛿 + 3𝜇 at 𝑡 = |𝑌|∕2 by Lemma 15.
It decreases as 𝑡 goes from |𝑌|∕2 to |𝑋|∕2 by convexity (this is where we use |𝑋| ⩾ |𝑌|). Finally,
at 𝑡 = |𝑋|∕2 it differs from 𝑑(𝑥, 𝛾𝑥) by an error of at most 18𝛿 + 3𝜇, again by Lemma 15. This
establishes the corollary. □

Wewill use these two corollaries in the proof of the division algorithm for surface groups in the
next section.

4 PROOF OF THE DIVISION ALGORITHM FOR SURFACE GROUPS

Now, we are ready to prove the division algorithm for group rings of high genus surface groups.
The main argument applies more generally to groups Γ acting on hyperbolic space ℍ𝑛 with large
infimum displacement, and yields the following theorem.

Theorem 18 (Division for groups acting with large displacement on hyperbolic space ℍ𝑛). Let 𝐾
be a field. Suppose that Γ acts on ℍ𝑛 with infimum displacement ⩾ 2000. Suppose that 𝑥 and 𝑦 are
elements in 𝐾Γ satisfying a non-trivial relation 𝑎𝑥 + 𝑏𝑦 = 0, and 𝑦 ≠ 0. Then there are 𝑞, 𝑟 ∈ 𝐾Γ

such that 𝑥 = 𝑞𝑦 + 𝑟 and |𝑟| < |𝑦| or 𝑟 = 0.

To obtain the division algorithm for surface groups (Theorem 1) from this, one needs to translate
from infimum displacement to genus. This is done at the end of the section.

4.1 Setup

Throughout the proof, we will keep track of how large the infimum displacement has to be for
the argument to work at that stage. To start, we assume that the infimum displacement is> 9𝛿 so
that there are no zero divisors.
We are given a non-trivial relation 𝑎𝑥 + 𝑏𝑦 = 0 where 𝑎, 𝑏, 𝑥 and 𝑦 ≠ 0 are elements of the

group ringℚΓ, and we want to show that there are 𝑞, 𝑟 ∈ ℚΓ such that 𝑥 = 𝑞𝑦 + 𝑟 and |𝑟| < |𝑦| or
𝑟 = 0. If |𝑥| < |𝑦|, then there is nothing to do, since we can take 𝑞 = 0, 𝑟 = 𝑥. If |𝑥| ⩾ |𝑦|, then it
is enough to subtract a multiple 𝑏′𝑦 of 𝑦 from 𝑥 for which the resulting element 𝑥′ = 𝑥 − 𝑏′𝑦 has
smaller diameter than 𝑥. Since the set of possible diameters is discrete and the elements 𝑥′ and
𝑦 satisfy the non-trivial† relation 𝑎(𝑥 − 𝑏′𝑦) + (𝑏 + 𝑎𝑏′)𝑦 = 0, iterating the process finitely many
times will prove the division algorithm.
Next, we will describe which points of 𝑥 we will try to cancel out with translates of 𝑦 in order

to reduce the diameter of the resulting group ring element 𝑥′. This will be dictated by the relation
𝑎𝑥 + 𝑏𝑦 = 0. Let 𝑜 be the barycenter of the support of 𝑎𝑥 and 𝑅 the radius of 𝑎𝑥. As long as the
infimum displacement is > 9𝛿, by Corollary 13, all the 𝑥-translates {𝛾𝑥}𝑎𝛾≠0 are contained in the
ball 𝐵𝑜(𝑅). Pick such an 𝑥-translate 𝛾𝑥 containing a boundary point of 𝑎𝑥. After multiplying our
relation on the left by (𝑎𝛾𝛾)

−1, we can assume that this translate is 𝑥, that is, that 𝑥 contains a
boundary point of 𝑎𝑥 and that 𝑎1 = 1.

† If this relation were trivial, then 𝑎 = 0 and the original relation would imply that 𝑦 is a zero-divisor.
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 997

For a non-negative constant 𝛼, let us call the points of 𝑥 that are in the 𝛼-neighborhood of the
boundary of 𝑎𝑥 the 𝛼-extremal points of 𝑥. We have shown in Lemma 10 that if we throw out the
5𝛿-extremal points from the support of 𝑥, then the resulting set has strictly smaller diameter. So
these are the points we will try cancel out. To that end, note that if the infimum displacement is
> 5𝛿 + 9𝛿, then, by Corollary 13, all these 5𝛿-extremal points are not contained in any other 𝑥-
translate 𝛾𝑥 with 𝑎𝛾 ≠ 0. The relation 𝑎𝑥 = −𝑏𝑦 implies that each one of themmust be contained
in a 𝑦-translate 𝛾𝑦 with 𝑏𝛾 ≠ 0, and Corollary 13 applied to 𝑏𝑦 implies that there is a unique such
𝑦 translate.
Therefore, as long as the infimum displacement of Γ is sufficiently large (> 14𝛿), the 5𝛿-

extremal points of 𝑥 can all be canceled by 𝑦-translates (weighted with appropriate coefficients).‡
Call the resulting element

𝑥′ = 𝑥 −
∑

𝑐𝛾𝛾𝑦.

Our goal in the rest of the proof is to show that the diameter of 𝑥′ is less than the diameter of 𝑥.

4.2 Showing |𝒙′| < |𝒙|

Assume that |𝑥′| ⩾ |𝑥|. First, we will show that this implies that

∙ 𝑥′ contains a 37𝛿-extremal point.

We begin by finding a ball centered at 𝑥 and containing 𝑥′. For a point 𝑝 of 𝑥′, if 𝑝 is a point of 𝑥
then by Section 3.2, we have

𝑑(𝑥, 𝑝) ⩽
|𝑥|
2

+ 𝛿,

and if 𝑝 is a 𝑦-point, then by the estimate on the distance between barycenters in Corollary 16:

𝑑(𝑥, 𝑝) ⩽ 𝑑(𝑥, 𝛾𝑦) + 𝑑(𝛾𝑦, 𝑝)

⩽

(|𝑥| − |𝑦|
2

+ 18𝛿 + 3 ⋅ 5𝛿
)

+

(|𝑦|
2

+ 𝛿

)

=
|𝑥|
2

+ 34𝛿.

Therefore, the ball of radius |𝑥|∕2 + 34𝛿 centered at 𝑥 contains 𝑥′.†
Let 𝑚 be the midpoint of a diameter realizing segment of 𝑥′. By Section 3.2, the distance from

𝑥 to𝑚 is ⩽
|𝑥|
2

+ 34𝛿 − |𝑥′|
2

+ 𝛿 ⩽ 35𝛿. Recall that 𝑥 has a boundary point of 𝑎𝑥. Call this point 𝑞.
Then

𝑑(𝑞,𝑚) ⩽ 𝑑(𝑞, 𝑥) + 𝑑(𝑥,𝑚) ⩽
|𝑥|
2

+ 𝛿 + 35𝛿

‡ To be more precise, 𝑐𝛾 = −𝑏𝛾 if 𝛾𝑦 contains a 5𝛿-extremal point of 𝑥 and 𝑐𝛾 = 0 otherwise.
† This implies |𝑥′| ⩽ |𝑥| + 68𝛿 by the triangle inequality. (Our proof does not need this, but the remark on the next page
does.)

 14697750, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12590 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



998 AVRAMIDI

shows that𝑚 is (|𝑥|∕2 + 36𝛿)-extremal. Since the diameter realizing segment has length |𝑥′|, one
of its endpoints is |𝑥|∕2 + 36𝛿 − (|𝑥′|∕2 − 𝛿) ⩽ 37𝛿 extremal. This proves the bullet.
Now, let us look at the extra points 𝑝 ∈ 𝑋′ − 𝑋 that have been introduced by subtracting the

𝑦-translates {𝛾𝑦}𝑐𝛾≠0 from 𝑥. We will refer to points of 𝑋′ − 𝑋 as 𝑦-points, since each of them
lies in one of the 𝑦-translates {𝛾𝑦}𝑐𝛾≠0. Fix a constant 𝜇 ⩾ 37𝛿. We next show that if the infimum
displacement is sufficiently large (> 36𝛿 + 6𝜇), then such a 𝑦-point 𝑝 cannot be 𝜇-extremal. If it
was, then by Corollary 13 it would have to cancel with a unique 𝑥-translate 𝜌𝑥 that is different
from 𝑥.‡ But then the barycenters 𝑥 and 𝜌𝑥 would be too close! More precisely, we would have
𝑑(𝑥, 𝜌𝑥) ⩽ 36𝛿 + 6𝜇 by Corollary 17, which contradicts the infimum displacement assumption.
In summary, assuming |𝑥′| ⩾ |𝑥| and infimum displacement > 36𝛿 + 6𝜇, we have shown that

𝑥′ has a 37𝛿-extremal point of 𝑥. Call this point 𝑞′.

Remark. In the case of free groups acting on trees, 𝛿 = 0 and above we can take 𝜇 = 0 so that at
this stage in the argument we have an element 𝑥′ with |𝑥′| ⩽ |𝑥| and if |𝑥′| = |𝑥|, then 𝑥′ has an
extremal point, which is not a 𝑦-point, hence must be a point of 𝑥. But we assumed that all the
extremal points of 𝑥 have been canceled out, so we arrive at a contradiction. In the case of groups
acting on ℍ𝑛, we have to work harder. The reason is that we have found a 37𝛿-extremal point of
𝑥 in 𝑥′, while only the 5𝛿-extremal points of 𝑥 have been canceled out.

Now, byCorollary 13, for large enough infimumdisplacement (> 37𝛿 + 9𝛿) the point 𝑞′ appears
in a unique 𝑦 translate 𝜌𝑦 that is different fromall the 𝑦-translates {𝛾𝑦}𝑐𝛾≠0 thatwe subtracted from
𝑥 to get 𝑥′. By Corollary 16 we have

𝑑(𝑥, 𝜌𝑦) ⩽
|𝑥| − |𝑦|

2
+ 18𝛿 + 3 ⋅ 37𝛿.

The rest of the argument breaks up into two cases, depending on the size of |𝑥| − |𝑦|.

First, we deal with the case is |𝒙| − |𝒚| ⩽ 𝝁

In this case, the barycenter of 𝜌𝑦 and of all the 𝑦-translates {𝛾𝑦}𝑐𝑦≠0 are (
𝜇

2
+ 129𝛿)-close to 𝑥.

Therefore, if the infimum displacement is large enough (> 𝜇 + 258𝛿), we must have 𝜌𝑦 = 𝛾𝑦 and
hence 𝜌 = 𝛾, which is a contradiction.

Finally we deal with the case |𝒙| − |𝒚| ⩾ 𝝁

Wewill show that in this case the 𝑦-points of 𝑥′ are < |𝑥|∕2 − 𝛿 away from 𝑥. This will imply that
the diameter of 𝑥′ is less than |𝑥| and we will be done.
Let 𝑝 be a 𝑦-point of 𝑥′. Thus, there is a 𝑦-translate 𝛾𝑦 and a 5𝛿-extremal point 𝑞 of 𝑥 so that

both 𝑝 and 𝑞 are in 𝛾𝑦. Denote by 𝐿 the length of the segment 𝑝𝑞 and𝑚 its midpoint. Since 𝑝 is not
𝜇-extremal, the segment 𝑞𝑝 can be extended by 𝜇 − 5𝛿 before it reaches the 5𝛿-neighborhood of
the boundary. Let𝑚′ be the midpoint of this extended segment. It fellow travels with the segment
𝑞𝑜 for a distance 𝑡 =

𝐿+𝜇−5𝛿

2
. Let 𝑦0 = 𝑞𝑜(𝑡) be the point obtained by traveling from 𝑞 to 𝑜 for a

‡ If 𝑝 canceled with 𝑥, then it would not have appeared in 𝑥′.
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 999

time 𝑡. Also, let 𝑥0 = 𝑞𝑜(|𝑥|∕2) be the point obtained by traveling from 𝑞 to 𝑜 for a time |𝑥|∕2. This
is illustrated in the figure below.

Note that |𝑥|
2

− 𝑡 =
|𝑥|−𝐿−(𝜇−5𝛿)

2
is non-negative because of the case we are in, so we can com-

pute

𝑑(𝑥, 𝑝) ⩽ 𝑑(𝑥, 𝑥0) + 𝑑(𝑥0, 𝑦0) + 𝑑(𝑦0,𝑚
′) + 𝑑(𝑚′, 𝑝)

⩽
(
9𝛿 +

3

2
⋅ 5𝛿

)
+
|||| |𝑥|2 − 𝑡

|||| + 4𝛿 +
𝐿 − (𝜇 − 5𝛿)

2

=
|𝑥|
2

+ 25.5𝛿 − 𝜇.

So, for this part of the argument to work, any 𝜇 > 26.5𝛿 will do.
In summary, everything works for 𝜇 = 37𝛿, in which case the biggest displacement condition

needed is that the infimum displacement is 𝜇 + 258𝛿 = 295𝛿. Since we are in hyperbolic space,
we can take 𝛿 = 5. Since 2000 > 295 ⋅ 5, this finishes the proof of Theorem 18.

4.3 From infimum displacement to genus

Buser showed in [2] that every surface of genus⩾ 2has a hyperbolicmetricwith infimumdisplace-
ment (=length of shortest geodesic) ⩾ 2

√
log(g). For this metric and g ⩾ 𝑒1000000 we get infimum

displacement ⩾ 2000 > 295 ⋅ 5, which is good enough. This finishes the proof of Theorem 1.

Remark. Buser and Sarnak show in [3] that there is a sequence of hyperbolic surfaces Σg𝑖
with

g𝑖 → ∞ for which one has a much better bound, namely, infimum displacement ⩾
4

3
log g𝑖 and
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1000 AVRAMIDI

that every genus g surface has a hyperbolic metric with infimum displacement 𝑐 log g where 𝑐

is some small (unspecified) positive constant that does not depend on the genus, but neither of
these can be directly applied to get an explicit bound on how high the genus g has to be.

5 EUCLID’S ALGORITHMAND ALGEBRAIC APPLICATIONS

In this section, Γ is a group acting on hyperbolic spaceℍ𝑛 with infimum displacement ⩾ 2000 and
𝐾 is a field. We will derive Corollaries 2–4 under these assumptions. Together with Theorem 18,
this will complete the proof of Theorem 5.

5.1 Proof of Euclid’s algorithm

We are given a pair of elements 𝑥, 𝑦 ∈ 𝐾Γ satisfying a non-trivial relation 𝑎𝑥 + 𝑏𝑦 = 0. Dividing
𝑥 by 𝑦 we get 𝑞0 and 𝑟0 such that 𝑥 = 𝑞0𝑦 + 𝑟0 and |𝑟0| < |𝑦| or 𝑟0 = 0. If 𝑟0 ≠ 0, then the elements
𝑦 and 𝑟0 satisfy the non-trivial relation 𝑎𝑟0 + (𝑏 + 𝑎𝑞0)𝑦 = 0. So we can divide 𝑦 by 𝑟0 to get 𝑞1

and 𝑟1 such that 𝑦 = 𝑞1𝑟0 + 𝑟1 and |𝑟1| < |𝑟0| or 𝑟1 = 0, and so on. We iterate this process. Since
at each step the diameter of the remainder decreases, the process stops after finitely many steps
with an 𝑟𝑘 that divides 𝑟𝑘−1 without remainder. All the pairs produced in this way generate the
same ideal (𝑥, 𝑦) = (𝑦, 𝑟0) = (𝑟0, 𝑟1) = ⋯ = (𝑟𝑘−1, 𝑟𝑘) = (𝑟𝑘, 0).
We now show that the last remainder 𝑧 = 𝑟𝑘 is a greatest common divisor of 𝑥 and 𝑦. The

element 𝑧 is a divisor of 𝑥 and 𝑦 since 𝑥, 𝑦 ∈ (𝑧). Suppose that 𝑧′ is another divisor such that
𝑥 = 𝑐𝑧′, 𝑦 = 𝑐′𝑧′. Since 𝑧 ∈ (𝑥, 𝑦), we can express it as 𝐾Γ-linear combination 𝑧 = 𝑎′𝑥 + 𝑏′𝑦 =

(𝑎′𝑐 + 𝑏′𝑐′)𝑧′, so 𝑧′ is a divisor of 𝑧. Therefore, 𝑧 is a greatest common divisor of 𝑥 and 𝑦.

5.2 Modules generated by two vectors 𝒗,𝒘 in 𝑲𝚪𝒅

Delzant’s result that 𝐾Γ has no zero-divisors implies that the submodule of 𝐾Γ𝑑 generated by a
single non-zero vector 𝑣 ∈ 𝐾Γ𝑑 is free. (If there are no zero divisors, then themap𝐾Γ → 𝐾Γ𝑑, 𝑎 ↦

𝑎𝑣 is an isomorphism onto its image, which is themodule generated by 𝑣.) Our division algorithm
implies the analogous result for two vectors. The proof is very similar to that of Euclid’s algorithm.

Corollary 3. Let 𝐾 be a field. Any submodule𝑀 of 𝐾Γ𝑑 generated by two vectors 𝑣, 𝑤 is free.

Proof. Let {𝑣𝑖}
𝑑
𝑖=1

and {𝑤𝑖}
𝑑
𝑖=1

be the coordinates of the vectors 𝑣 and𝑤 ∈ 𝐾Γ𝑑, respectively. If both
vectors are zero, then there is nothing to do, so we may assume that 𝑣1 ≠ 0 and that |𝑣1| ⩾ |𝑤1|.
If for any relation 𝑎𝑣 + 𝑏𝑤 = 0 both 𝑎 and 𝑏 are zero, then𝑀 is free of rank two. So, suppose that
there is such a relation with either 𝑎 or 𝑏 non-zero. We will show that this implies that 𝑀 is free
of rank one.
There are two cases to consider, depending on whether or not 𝑤1 is zero.

Case 1:𝑤1 = 0. Looking at the first coordinate of the relation, we get 𝑎𝑣1 = 0 and since 𝑣1 ≠ 0we
must have 𝑎 = 0. Thus 𝑏𝑤 = 0. Since the relation was non-trivial, 𝑏 ≠ 0 so we must have 𝑤 = 0.
But then𝑀 is generated by a single vector 𝑣, and hence it is free of rank one.
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 1001

Case 2: 𝑤1 ≠ 0. Then the relation 𝑎𝑣1 + 𝑏𝑤1 = 0 implies that both 𝑎 and 𝑏 are non-zero. We use
this relation to divide 𝑣1 by𝑤1 and get 𝑣′ = 𝑣 − 𝑞𝑤 satisfying |𝑣′

1
| < |𝑤1| or 𝑣′

1
= 0. Then the vec-

tors 𝑣′, 𝑤 still generate𝑀 and either 𝑣′
1
= 0 or the sumof diameters of their first entries |𝑣′

1
| + |𝑤1|

is strictly smaller than |𝑣1| + |𝑤1|. Moreover, 𝑎𝑣′ + (𝑏 − 𝑎𝑞)𝑤 = 0 is again a non-trivial relation
(with 𝑎 ≠ 0).
At this point, we have arrived back at the situation of the two cases, with 𝑣′

1
in place of 𝑤1.

Moreover, if 𝑣′
1
≠ 0, then the sumof diameters of the first entries of generators |𝑣′

1
| + |𝑤1| is strictly

smaller than |𝑣1| + |𝑤1|. Therefore, after iterating this process finitely many times it will stop and
we will arrive in the case 1 situation with𝑀 a free module generated by a single vector.

5.3 Bass’s “local-to-global” method for ℤ𝚪-modules

Since ℚΓ has no zero divisors, its subring ℤΓ also has no zero divisors. This implies that any
submodule of ℤΓ𝑑 generated by a single vector 𝑣 is free. (If 𝑣 is zero, there is nothing to show,
and if 𝑣 is non-zero, then the map ℤΓ → ℤΓ𝑑, 𝑎 ↦ 𝑎𝑣 is injective, hence an isomorphism onto its
image.) The analogous statement for modules generated by two vectors is not true. For example,
the ideal (2, 𝑡 − 1) in the group ring ℤ[ℤ] = ℤ[𝑡, 𝑡−1] is not free even though the group ℤ acts on
hyperbolic space with large infimum displacement. A general “local-to-global” theorem of Bass
([1]) shows that this sort of thing does not happenwhen themodule splits off as a direct summand
ofℤΓ𝑑 (in other words, if themodule is projective). This is good enough for the proof of Theorem 8
given in Section 7.
Below, we specialize Bass’s argument to our situation. For any ℤΓ-module 𝑀, we denote its

mod 𝑝 reduction by 𝑀𝑝 ∶= 𝑀∕𝑝𝑀. For example, if 𝑣, 𝑤 are vectors in ℤΓ𝑑, then (𝑣, 𝑤) is the
ℤΓ-module they generate and (𝑣, 𝑤)𝑝 is its mod 𝑝 reduction.

Lemma 19. Let 𝑣, 𝑤 be two vectors in ℤΓ𝑑. Suppose that the inclusion of modules (𝑣, 𝑤) ↪ ℤΓ𝑑

induces inclusions of mod 𝑝 reductions (𝑣, 𝑤)𝑝 ↪ 𝔽𝑝Γ
𝑑 for each prime 𝑝. Then (𝑣, 𝑤) is a free ℤΓ-

module.

Proof. If 𝑣 and 𝑤 do not satisfy any non-trivial relation, then (𝑣, 𝑤) is a free ℤΓ-module. If they
satisfy a non-trivial relation, then they generate the same ℚΓ module as their greatest common
divisor 𝑧 ∈ ℚΓ𝑑. We rescale 𝑧 (multiplying by a rational number if necessary) so that 𝑧 ∈ (𝑣, 𝑤)

and 𝑧 ∉ (𝑘𝑣, 𝑘𝑤) for any integer 𝑘 > 1. Since 𝑧 is aℚΓ-divisor of 𝑣 and𝑤, there is a positive integer
𝑚 such that 𝑚𝑣 = 𝑎𝑧,𝑚𝑤 = 𝑏𝑧 for some 𝑎, 𝑏 ∈ ℤΓ. Pick the smallest such 𝑚. In summary we
have sandwiched the module generated by 𝑧 in the following way:

(𝑚𝑣,𝑚𝑤) ⊂ (𝑧) ⊂ (𝑣, 𝑤).

Our goal is to show that𝑚 = 1. Suppose that it is not, and let 𝑝 be a prime dividing𝑚. Note that
the composition of induced maps

(𝑚𝑣,𝑚𝑤)𝑝 → (𝑧)𝑝 → (𝑣,𝑤)𝑝 (4)

is zero because 𝑝 divides𝑚. The key is to show that the second map is injective. □
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1002 AVRAMIDI

Claim : The map 𝑖 ∶ (𝑧)𝑝 → (𝑣, 𝑤)𝑝 is injective. By hypothesis, the inclusion (𝑣, 𝑤) ↪ ℤΓ𝑑

induces an inclusion of mod 𝑝 reductions (𝑣, 𝑤)𝑝 ↪ 𝔽𝑝Γ
𝑑. By Corollary 3, (𝑣, 𝑤)𝑝 is a free 𝔽𝑝Γ-

module. So, the image of 𝑖 is a submodule of a free module and generated by one element, so it is
free by Corollary 3. Therefore, 𝑖 is either injective or the zero map. The later happens precisely if
𝑧 ∈ (𝑝𝑣, 𝑝𝑤), but this is ruled out by our choice of 𝑧. So, the map 𝑖 is injective.
Since the composition (4) is zero, this implies that the first map (𝑚𝑣,𝑚𝑤)𝑝 → (𝑧)𝑝 is the zero

map, which is the same as saying (𝑚𝑣,𝑚𝑤) ⊂ (𝑝𝑧). But then 𝑧 is a ℤΓ-divisor of both 𝑚

𝑝
𝑣 and

𝑚

𝑝
𝑤, which contradicts the minimality of𝑚. So we are done.

Corollary 20 (Bass). If a submodule 𝑀 of ℤΓ𝑑 generated by two vectors 𝑣, 𝑤 splits off as a direct
summand, then it is free.

Proof. If (𝑣, 𝑤) is a direct summand of ℤΓ𝑑, then the composition of the inclusion and projection
(𝑣, 𝑤) ↪ ℤΓ𝑑 → (𝑣,𝑤) is the identity map, so its mod 𝑝 reduction is as well. Therefore, the mod
𝑝 reduction of the inclusion is injective. So, by Lemma 19, (𝑣, 𝑤) is a free module. □

As mentioned in the introduction, one can prove freeness under a weaker assumption on the
module 𝑀, namely, the assumption that ℤΓ𝑑∕𝑀 is torsion-free. Note that this assumption is
satisfied by the augmentation ideal, the relation module, and the second homotopy module of a
2-complex.

Corollary 4. If a submodule𝑀 of ℤΓ𝑑 is generated by two vectors and ℤΓ𝑑∕𝑀 is torsion-free, then
𝑀 is free.

Proof. Suppose 𝑣 ∈ 𝑀 and 𝑣 = 𝑝𝑤 for some𝑤 ∈ ℤΓ𝑑. In the quotient𝑄 ∶= ℤΓ𝑑∕𝑀wehave 𝑣 = 0

and since 𝑄 is torsion-free also 𝑤 = 0. But that means 𝑤 ∈ 𝑀 and therefore 𝑣 ∈ 𝑝𝑀. So, we have
shown that 𝑀 ∩ 𝑝ℤΓ𝑑 = 𝑝𝑀, which is the same as saying that 𝑀𝑝 → 𝔽𝑝Γ

𝑑 is injective. So, by
Lemma 19,𝑀 is a free module. □

6 GROUPS ACTING ONHYPERBOLIC SPACE

One focus of the present paper is surface groups. They are two-dimensional groups acting on
hyperbolic space, and requiring a single relation to present. Moreover, passing to finite index sub-
groupswe get surface groups again but nowof higher genus and (ifwe pick the subgroup correctly)
with large infimum displacement. In higher dimensions 𝑛 ⩾ 3we can start with an arithmetically
constructed uniform lattice in SO(𝑛, 1) and then pass to a deep enough congruence subgroup Γ to
get a group action with large infimum displacement on the hyperbolic space ℍ𝑛. It is well known
that — in contrast to surface groups — these higher dimensional lattices require more than one
relation. We will show next that they require more than two. This is a direct consequence of the
more general statement that any cell structure for 𝑀 = ℍ𝑛∕Γ has more than two 𝑘-cells in each
dimension 0 < 𝑘 < 𝑛.

Corollary 21. Suppose that𝑀 is a closed hyperbolic 𝑛-manifold of injectivity radius ⩾ 1000. If 𝑋 is
a cell complex homotopy equivalent to𝑀, then 𝑋 must have at least three 𝑘-cells in each dimension
0 < 𝑘 < 𝑛.
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 1003

Proof. Let Γ = 𝜋1𝑀 be the fundamental group. It acts on �̃� = ℍ𝑛 with infimum displacement
⩾ 2000. The cellular chain complex of the universal cover of 𝑋 is a free ℚΓ-resolution 0 → 𝐶𝑛 →

𝐶𝑛−1 → ⋯ → 𝐶0 → ℚ, where 𝐶𝑘 is a free module of rank equal to the number of 𝑘-cells in 𝑋. If
𝑋 has less than three 𝑘-cells, then, by Corollary 3, the image of 𝐶𝑘 → 𝐶𝑘−1 is a free ℚΓ-module
and consequently one gets a free resolution 0 → image 𝐶𝑘 → 𝐶𝑘−1 → ⋯ → 𝐶0 → ℚ of length 𝑘.
But that means that Γ has rational cohomological dimension 𝑘, which contradicts the fact that it
is the fundamental group of a closed hyperbolic 𝑛-manifold. □

Given a handle decomposition for 𝑀, one can collapse each 𝑘-handle to a 𝑘-cell to obtain a
homotopy equivalence 𝑀 → 𝑋 to a complex that has one 𝑘-cell for each 𝑘-handle. Applying the
above corollary to this 𝑋 gives the more geometric sounding Corollary 7 from the introduction.

2-relator groups acting on ℍ𝒏 with large infimum displacement

Let us now shift attention to 2-relator groups Γ and 2-complexes 𝑋 presenting them as such. A
new wrinkle is that we do not know whether such 2-relator groups have aspherical presentation
2-complexes 𝑌. For any that do (in particular, for the high genus surface groups) it is clear what a
standard 2-complex with fundamental group Γ is (one homotopy equivalent to 𝑌 ∨ 𝑆2 ∨ ⋯ ∨ 𝑆2).
When such a 2-relator group acts on ℍ𝑛 with large infimum displacement, we get a version of
Theorem 8 from the introduction.

Corollary 22. Suppose that 𝑋 is a finite 2-complex with two 2-cells and fundamental group Γ. If Γ
acts isometrically on ℍ𝑛 with infimum displacement ⩾ 2000, then

∙ the cohomological dimension of Γ is ⩽ 2,
∙ 𝜋2𝑋 is free, and
∙ if Γ has an aspherical presentation 2-complex 𝑌, then 𝑋 is homotopy equivalent to either 𝑌 or

𝑌 ∨ 𝑆2 or 𝑌 ∨ 𝑆2 ∨ 𝑆2. The third case happens only if Γ is a free group.

Proof. Look at the chain complex on the universal cover:

𝜋2(𝑋) → 𝐶2(𝑋) → 𝐶1(𝑋) → 𝐶0(𝑋) → ℤ.

The image of the second map is called the relation module, and we will denote it by 𝑅. Since 𝐶2

is generated by two elements, its image 𝑅 is as well. Moreover, 𝑅 is a submodule of a free module,
and the quotient 𝐶1∕𝑅 is again a submodule of a free module. Therefore, by Corollary 4, 𝑅 is a free
ℤΓ-module. Since 𝑅 is also the kernel of the thirdmap, we get a free resolution 𝑅 → 𝐶1 → 𝐶0 → ℤ

of length 2. This is the same as saying that the cohomological dimension of Γ is ⩽ 2, so we have
proved the first bullet.
Since 𝑅 is free, 𝐶2 splits as a direct sum 𝜋2(𝑋) ⊕ 𝑅. Recall that 𝐶2 is generated by two elements,

so the projection𝐶2 → 𝜋2(𝑋) shows that𝜋2(𝑋) is generated by two elements.Moreover, the𝜋2(𝑋)

is a submodule of a free module and its quotient 𝐶2∕𝜋2(𝑋) is, as well, so Corollary 4 implies that
𝜋2(𝑋) is free. This proves the second bullet.
Finally, suppose that there is an aspherical presentation 2-complex𝑌. Start by building an arbi-

trary 𝜋1-isomorphism𝑌 → 𝑋. Since 𝜋2𝑋 is free, we can extend it to a homotopy equivalence from
a standard complex𝑌 or𝑌 ∨ 𝑆2 or𝑌 ∨ 𝑆2 ∨ 𝑆2 bymapping the 2-spheres to a basis for 𝜋2𝑋. In the
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1004 AVRAMIDI

third case 𝜋2𝑋 = ℤΓ2, so the relation module 𝑅 vanishes, so Γ has cohomological dimension one
and hence, by Stallings’ theorem ([15]), is a free group. □

Since the fundamental group of any closed, orientable surface Σ of genus g ⩾ 𝑒1000000 acts on
ℍ2 with infimum displacement ⩾ 2000, the third bullet of Corollary 22 implies Theorem 8.

Flat and hyperbolic 3-dimensional 2-relator groups

Torsion-free 1-relator groups have aspherical presentation 2-complexes ([4]), so they are at most
2-dimensional. We will finish this section with several examples, showing that this is no longer
true for 2-relator groups (not even for those 2-relator groups that act by covering translations on
hyperbolic space).
The simplest 3-dimensional example of a 2-relator group was pointed out to me by Ian Leary.

It is the fundamental group of the mapping torus of the matrix ( 0 1
−1 0) acting on 𝕋2. Note that

this is a closed, flat† 3-manifold, so the fundamental group is 3-dimensional. It has a 3-generator
and 3-relator presentation < 𝑎, 𝑏, 𝑡 ∣ [𝑎, 𝑏] = 1, 𝑡𝑎𝑡−1 = 𝑏, 𝑡𝑏𝑡−1 = 𝑎−1 >. One can eliminate the
generator 𝑏 to get a 2-generator, 2-relator presentation.
There are also hyperbolic 3-manifold examples that were explained tome by Jean PierreMutan-

guha. The mapping torus of the matrix (2 1
1 1) acting on the punctured torus is a hyperbolic 3-

manifold with a single cusp.† Its presentation is < 𝑎, 𝑏, 𝑡 ∣ 𝑡𝑎𝑡−1 = 𝑎2𝑏, 𝑡𝑏𝑡−1 = 𝑎𝑏 > and since
the second relation says 𝑎 = [𝑡, 𝑏], one can eliminate 𝑎 together with this relation to get a 1-relator
presentation. One can close off the cusp by gluing in a solid torus, and for all but finitely many
choices of gluing parameters (a pair of relatively prime numbers (𝑝, 𝑞)) one gets a closed hyper-
bolic 3-manifold (see [16, 4.7]). On the level of fundamental groups, the gluing introduces a new
relation of the form 𝑡𝑝 = [𝑎, 𝑏]𝑞. So, one ends up with a closed hyperbolic 3-manifold whose fun-
damental group has a 2-generator 2-relator presentation

⟨
𝑏, 𝑡 ∣ 𝑡[𝑡, 𝑏]𝑡−1 = [𝑡, 𝑏]2𝑏, 𝑡𝑝 = [[𝑡, 𝑏], 𝑏]𝑞

⟩
.

7 AN IMPROVED TIETZE’S THEOREM FOR SURFACE
FUNDAMENTAL GROUPS

An old theorem of Tietze [6] says that two 2-complexes with the same fundamental group become
homotopy equivalent after wedging both of them with enough 2-spheres. This section is about
improvements on this theorem when the fundamental group is that of a closed surface Σ. The
main point is to interpret a Nielsen equivalence result of Louder in this light.

Minimal Euler characteristic

First note that if 𝑋 is a 2-complex with fundamental group 𝜋1Σ and minimal Euler characteristic
𝜒(𝑋) = 𝜒(Σ), then 𝑋 is homotopy equivalent to Σ.

† The manifold is flat since it is obtained by gluing the ends of 𝕋2 × [0, 1] by an isometry.
† This manifold is homeomorphic to the figure-eight knot complement (see [17, p. 177]).
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DIVISION IN GROUP RINGS OF SURFACE GROUPS 1005

Proof. The complexes become homotopy equivalent after wedging both with the same large num-
ber of 2-spheres𝑑. SinceΣ is aspherical, on𝜋2 this homotopy equivalence gives𝜋2𝑆 ⊕ ℤΓ𝑑 ≅ ℤΓ𝑑.
So (see, for example, [14]) 𝑆 is also aspherical, and hence homotopy equivalent to Σ. □

Nielsen equivalence for surface groups

The orientable surfaces have presentations

⟨
𝑥1, 𝑦1, … , 𝑥g , 𝑦g ∣ [𝑥1, 𝑦1]⋯ [𝑥g , 𝑦g ] = 1

⟩
,

while the non-orientable ones have presentations

⟨
𝑥1, … , 𝑥𝑟 ∣ 𝑥2

1 ⋯𝑥2
𝑟 = 1

⟩
.

A standard generating set is one of these, possibly with some extra generators 𝑧1, … , 𝑧𝑘 satisfying
the trivial relations 𝑧1 = 1,… , 𝑧𝑘 = 1 thrown in at the end.
Now, let 𝑋 be a finite presentation 2-complex with 𝑛 generators 𝑒1, … , 𝑒𝑛 for the surface group,

and fix a 𝜋1-isomorphism 𝑓 ∶ 𝑋 → Σ. In [13], Louder showed the following.

∙ There is a free group automorphism 𝜑 ∶ 𝐹𝑛 → 𝐹𝑛 so that 𝑓◦𝜑(𝑒1), … , 𝑓◦𝜑(𝑒𝑛) is a standard
generating set for 𝜋1Σ.

Interpretation as a quantitative variant of Tietze’s theorem for surface
groups

For concreteness, suppose that it is one representing a genus g orientable surface with 𝑘 trivial
generators at the end (the argument in the non-orientable case is similar). Form a new complex

𝑌 = 𝑋 ∪ 𝐷2
0 ∪ 𝐷2

1 ∪ ⋯ ∪ 𝐷2
𝑘

by attaching 𝑘 + 1 different 2-cells to 𝑋. The disk 𝐷2
0
is attached along the commutator

[𝜑(𝑒1), 𝜑(𝑒2)]⋯ [𝜑(𝑒2g−1), 𝜑(𝑒2g )] and the other disks𝐷2
𝑖
are attached along 𝜑(𝑒2g+𝑖). By construc-

tion, these attaching maps are nullhomotopic in 𝜋1𝑋, so 𝑌 is homotopy equivalent 𝑋 ∨ 𝑆2 ∨ ⋯ ∨

𝑆2. On the other hand, the map 𝑓 extends to 𝑌 and its restriction to the union 𝑆 = 𝐷2
0
∪ ⋯ ∪ 𝐷2

𝑘
is a 𝜋1-isomorphism. Since 𝑓 ∶ 𝑆 → Σ is a 𝜋1-isomorphism that extends to the 2-cells of 𝑋, the
attaching maps of the 2-cells of 𝑋 are null-homotopic in 𝑆, and we conclude that 𝑌 is also homo-
topy equivalent to 𝑆2 ∨ ⋯ ∨ 𝑆2 ∨ 𝑆. Finally, since the 2-complex 𝑆 has the minimal possible Euler
characteristic 𝜒(𝑆) = 𝜒(Σ) among 2-complexes with this fundamental group, the map 𝑓 ∶ 𝑆 → Σ

is a homotopy equivalence. In summary, 𝑋 becomes standard after wedging on 𝑘 + 1 different
2-spheres:

𝑋 ∨ (𝑘 + 1)𝑆2 ∼ Σ ∨ (# of 2-cells of 𝑋)𝑆2.

Taking Euler characteristics of this, we see that 𝑘 + 1 = (# of 2-cells of 𝑋) − (𝜒(𝑋) − 𝜒(Σ)). So,
we arrive at the following proposition, which is a quantitative version of Tietze’s theorem for
surface groups.
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1006 AVRAMIDI

Proposition 23. Let Σ be a closed, orientable surface and 𝑋 a finite 2-complex with fundamental
group 𝜋1Σ. Then 𝑋 becomes standard after wedging on (# of 2-cells of 𝑋) − (𝜒(𝑋) − 𝜒(Σ)) differ-
ent 2-spheres.

Second proof of Theorem 8

The situation that our division algorithm can say something about is when 𝑋 has one vertex, two
2-cells and Euler characteristic 𝜒(𝑋) = 𝜒(Σ) + 1. In this case, it is easy to see that 𝑘 = 0 and the
above homotopy equivalence becomes

𝑋 ∨ 𝑆2 ∼ Σ ∨ 𝑆2 ∨ 𝑆2.

On 𝜋2 this says 𝜋2𝑋 ⊕ ℤΓ ≅ ℤΓ2. Therefore, by Corollary 20, 𝜋2𝑋 is free. From here we can pro-
ceed as in the proof of the third bullet of Corollary 22 to prove Theorem 8. □
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